Exportar registro bibliográfico

Detecção de notícias falsas usando técnicas de deep learning (2019)

  • Authors:
  • USP affiliated authors: GUARISE, LUCAS - EESC E ICMC
  • Unidades: EESC E ICMC
  • Sigla do Departamento: SCC
  • Subjects: PROCESSAMENTO DE LINGUAGEM NATURAL; INTELIGÊNCIA ARTIFICIAL
  • Language: Português
  • Abstract: Com a democratização da comunicação proporcionada pelo uso massivo das redes sociais surge um problema que se mostra capaz de influenciar muitos e mudar o curso da atualidade, fala-se do grande aumento da quantidade de notícias falsas e do escalonamento do compartilhamento dessas notícias pela rede. Devido ao grande número de notícias, e sua velocidade de propagação pela rede, a revisão de todo esse conteúdo por profissionais capacitados se torna infactível. Uma das formas mais promissoras de combate à disseminação de notícias falsas é a automatização na detecção desse conteúdo, ou seja, a capacidade de classificar o conteúdo como verdadeiro ou não sem a interação de um humano. Diversos esforços na tentativa de construir algoritmos capazes de fazer essa classificação já existem, alguns por parte de vários pesquisadores e outros até por parte de empresas como Google e Facebook. O uso de algoritmos de aprendizado de máquina e mais especificamente o uso de aprendizado profundo se mostram promissores devido a capacidade de reconhecer padrões semânticos de que escapam ao leitor comum, que podem indicar se a notícia é verdadeira ou não. Além disso o avanço de técnicas de processamento de linguagem natural e de algoritmos para a criação de palavras vetorizadas contribui para uma melhor performance de redes neurais sobre tarefas relacionadas com texto. Neste projeto explora-se o uso de modelos de aprendizado profundo para construir um classificador sobre a veracidade de notícias. O modelo de rede de aprendizado profundo escolhido foi o hierarchical attention networks, ou HAN. Este modelo cria uma representação efetiva do texto e, diferentemente de outras arquiteturas de redes, permite a visualização dos dados de saída. Através de um mapa de calor obtêm-se uma indicação do porquê da classe escolhida, dando destaque as palavras e sentenças consideradas mais importantes para a classificação.Neste projeto também usa-se de modelos pré-treinados para a criação das palavras vetorizadas, usando o algoritmo Word2vec. Após a construção, o modelo foi treinado e avaliado com base em um banco de dados de notícias pré classificadas.
  • Imprenta:

  • Download do texto completo

    Tipo Nome Link
    Versão Publicadalucas guarise.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GUARISE, Lucas; REZENDE, Solange Oliveira. Detecção de notícias falsas usando técnicas de deep learning. [S.l: s.n.], 2019.
    • APA

      Guarise, L., & Rezende, S. O. (2019). Detecção de notícias falsas usando técnicas de deep learning. São Carlos.
    • NLM

      Guarise L, Rezende SO. Detecção de notícias falsas usando técnicas de deep learning. 2019 ;
    • Vancouver

      Guarise L, Rezende SO. Detecção de notícias falsas usando técnicas de deep learning. 2019 ;

    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI:

    Digital Library of Academic Works of Universidade de São Paulo     2012 - 2020